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Abstract

Machine learning (ML) has long been used in chemical engineering to address the need of
learning from data. Recently, there has been a growing interest in improving current industrial
process control by adopting reinforcement learning (RL) technologies. It is promising to leverage
RL approaches to tackle the limitations of the current model predictive controller (MPC). In this work,
in addition to introducing a model-free RL-based MPC that handles nonlinear process dynamics,
we propose a new way to set up the RL-based MPC through pre-training. In such a method, the
RL-based MPC starts by duplicating a proven offset-free MPC via offline generated data. Then,
the MPC improves itself further via online interactions. The traditional RL-based MPC requires a
considerably large amount of data from real-time interactions with the environment, which could
bring safety concerns. The RL-based MPC we propose can reduce online computation costs and
ensure safety when implemented in a practical industrial process.
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1 Introduction

The design of an optimal control system is critical to technical systems automation in the chemical process
industry. While classic approaches such as PID controllers have widespread in industrial applications, their
inefficiency, caused by disturbance, dead time and constraints, leads to compromised product quality and waste
of energy resources. Additionally, it is often observed in process industries that the nonlinear nature and
multi-input multi-output (MIMO) systems exist, which makes the parametrization of PID controllers especially
complicated. Therefore, a decent approach, MPC, which is based on recurrent real-time optimization of a
mathematical process model, was developed to address the shortcomings of classic control approaches.
Although MPC requires higher computational cost, it brings advantages such as implicit formulation, flexibility,
and explicit model usage [1][2].

The research of adopting RL techniques to MPC has received growing attention since MPC and RL are
similar in the ability to find optimal control actions. MPC generally uses models, and the performance depends
heavily on the goodness of the models. However, there are many limitations of the current MPC, including the
requirement of accurate models, the linear and nonadaptive nature of the conventional controllers, and the
complexity of online computations [3]. In contrast, RL is generally model-free, and the efficiency relies on the
effectiveness of offline/online training. The structure of MPC is fixed once put for online operations, while RL
doesn’t have a fixed one. Therefore, RL has the potential to accommodate unexpected changes in the actual
process operations through online evolution [4]. Another advantage of RL is that it needs relatively less
computational effort compared to recurrent online optimization in MPC.

Motivated by the strengths of RL approaches, we are also interested in exploring RL-based MPC design. The
traditional online training process for RL is usually time-consuming and doesn’t always guarantee acceptable
control actions, which could lead to high system malfunctions [4]. Thus, we seek a new RL-based MPC
initialized to have a decent starting point from which it could adapt to real-time process dynamics through online
interactions. Our new approach has a more data-efficient training process and ensures proper control solutions
at the early phase of process operations, bringing lower computational costs and safety risks.

2 Background

2.1 Offset-free MPC formulation

The nonlinear model investigated in the report is a continuous stirred tank reactor (CSTR) under closed-loop
control, where an exothermic reaction of A turns into B takes place. The description of dynamics in the ODE
form is as the following [5]:
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The ODE system is then converted to a discrete-time model to enable MPC usage:

Xy = A X1 +B-up_
Vi1 =C X1 + Dy



In the model, there are four state variables, two manipulated inputs (the reactor feed flow rate F' and the coolant
feed flow rate F¢), and two measured outputs (the reactor temperature Tg and the coolant temperature 7¢). A,
B, C are nonzero matrices, D is a zero matrix.

Furthermore, the offset-free approach is used to handle plant-model mismatch in MPC by introducing
additional “integrating” states (#). The new model takes the following form:
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In the new model, Gy is a tunable parameter and is chosen to be a zero matrix. I is an identity matrix. L is
the observer gain matrix and is calculated by tuning the matrix P. The estimation of the augmented states (X) is
computed by the Luenberger observer [6]:
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2.2 Actor-critic method in RL

In brief, RL is developed to mimic human behaviours in the sequential decision-making process. The early
RL approaches were generally value-based or policy-based. However, it has been discovered that value-based
methods would diverge in largescale problems while policy-based approaches would have significant variance
in value estimation. Thus, a hybrid technique combining the value-based and the policy-based methods, the
actor-critic (AC) approach, was introduced for better performance. AC consists of two neural networks: the actor
network (1), which aims to find the optimal policy, and the critic network (Q ), which evaluates the decision
made in certain situations. There are many popular algorithms in AC, such as deep deterministic policy gradient
(DDPG), which works in continuous action spaces [7]. Due to the feature of model-free and determinism, the
RL-based MPC in the report uses a DDPG framework.

3 Methods

3.1 CSTR Model

Our proposed approach is first tested on the nonlinear CSTR model described in section 2.1. The initial step
involves transferring the knowledge from the offset-free MPC to the actor network constructed by a deep neural
network (DNN). In this step, the offset-free MPC generates offline data in an open-loop manner, which consists
of feature variables (state variables, past control actions, set point information) and target variables (current
control actions). The DNN substitutes the actor network portion in the RL agent upon being fully trained via



the offline data. The pre-trained actor network is validated by comparing it against the offset-free MPC and
checking its online training results using a very low actor learning rate.

Next, the objective of the RL-based MPC is set up by formulating a reward function. While the ordinary
MPC tackles the minimization problems, the RL-based MPC solves maximization problems. Therefore, we
choose the reward function to be the negative value of the objective function in the offset-free MPC, which is:
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Subsequently, we implement continuous set point tracking by modifying the local reset function that adjusts
the model’s parameters, such as state and set point values, in the Simulink RL environment. By default, the
local reset function randomizes parameters at the beginning of each episode. However, it is undesirable in
continuous set point tracking, where the current states inherit from the previous ones. The feature of
inheriting-state is realized by accessing past data through Simulation Data Inspector.

Lastly, the model undergoes online training by tuning hyperparameters (learning rates, noise variance, noise
variance decay rate, discount factor, buffer size, smoothing factor), expecting to find a sweet point where
the resulting RL-based MPC outperforms the one before online training. In each online training session, the
maximum number of training episodes is set to 3456 and set points change every 20 episodes. While not strictly
necessary for this step, the pre-trained critic network can be acquired through online training with the actor
learning rate set to 0. The pseudocode of our RL method is provided in Algorithm 1.

3.2 Water Tank Model

To investigate the feasibility of our proposed approach, a modified MATLAB water tank reinforcement
learning model is also examined, which is a single-input single-output (SISO) system [8]. The testing for the
water tank model undergoes similar steps. Instead of building a state space model and then replacing it with a
DNN, the first step is to obtain an actor network through a conventional reinforcement learning process, which
can be insufficiently trained. Next, similar reward and local reset functions are employed in the water tank model.
Subsequently, the actor network is further trained by performing the continuous set point tracking task, and its
resulting performance is then compared to its pre-training state. During each testing trial, the maximum number
of training episodes is set to 1000 and the set point is adjusted every 10 episodes.



Algorithm 1 DDPG with pre-training

Initialize actor network 7(s, 8) with pre-trained parameters 67
if pre-trained critic network is available then
Initialize critic network Q(s, a, ¢) with pre-trained parameters ¢”
else
Initialize critic network with random parameters ¢
end if
Initialize target network Q’ and 7’ with the same parameters as Q and 7, respectively
Initialize experience buffer B
for episode = 1 to max-episode do
Initialize stochastic noise N for action exploration
11:  Receive initial observation s
12:  for t =1 to max-step do
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13: Select action a, = 7(s;,0) + N; according to the current policy and noise model
14: Execute action a;, observe reward r; and new state s, |

15: Store the experience < s;, a;, ¢, S;+1 > in B

16: Sample a random minibatch of M experiences < s;, a;, r;, s;+1 > from B

17: Compute the value function target:

yi=ri + 0 (six1, 7' (si41,60),¢")

18: Update Q by minimizing the loss function value:
M
L=+ i—21(yi — O(si,ai, 9))*
19: Update  using the sampled policy gradient:
M
1
Vol ~ D Va(s0)Q(si 7 (50, 0), §)Vor(si, 0)
i=1

20: Update the target network Q" and n’:

¢ =1¢+(1-1)¢
0 =70+ (1—1)0

21:  end for
22: end for




4 Results

4.1 CSTR Model
4.1.1 CSTR Model Actor Network Validation

Figure 1 illustrates that the output response trajectories from the two MPCs are identical, indicating that in
the absence of interactions with the environment, the proposed RL-based MPC can effectively replicate the
performance of the offset-free MPC.

Figure 2 shows that the performance of the proposed RL-based MPC is almost identical before and after
doing online training, which means the proposed RL-based MPC can work safely like an offset-free MPC when
learning from the environment very slowly.

Figure 1: Performance comparison between offset-free MPC (solid blue line) and the proposed RL-based MPC
without online interactions (dot-dash red line). The dashed yellow line represents set points.
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Figure 2: The performance comparison between the proposed RL-based MPC before online training (solid blue
line) and that after online training (dot-dash green line). The dashed yellow line represents set points. Tuning
parameters: actor learning rate = 1 x 10710,

4.1.2 Continuous Set Point Tracking Environment

Figure 3 illustrates the successful inheritance of current states from the states of the last episode, which implies
the implementation of continuous set point tracking in the Simulink RL environment using the inheriting-state
method can replicate the industrial process control environment.
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Figure 3: The output response trajectories (solid blue line) of five consecutive set point tracking using the
inheriting-state method. The dashed yellow line represents set points.



4.1.3 CSTR Model Online Training

Figure 4 shows the training results without using a pre-trained critic network. It is obvious that, after doing
online training, a reduction in overshoot is observed in the output response Tr. However, slightly oscillatory
behaviour and more overshoot are observed in the output response 7¢. Figure 5 shows that increasing the actor
learning rate while keeping other hyperparameters constant leads to significantly worse behaviour of the T¢
output.

Testing using a pre-trained critic network is also performed. Figure 6 illustrates the training result of the
critic network No.22. If the critic network is well-trained, episode QO (represented by the yellow line) is
expected to converge to the true long-term discounted reward (represented by the blue line). In the figure,
episode QO follows the general trend of the episode reward, however, there are noticeable deviations throughout
the training process, which indicates the accuracy of the resulting critic network is limited. Figure 7
demonstrates that when using the same hyperparameters as Figure 4, the outcomes using the pre-trained critic
network are worse (showing noticeable offsets) compared to the dynamics shown in Figure 4.

Figure 8 illustrates comparable training outcomes as those depicted in Figure 4 when using the pre-trained
critic network and a different set of hyperparameters. However, when using other sets of hyperparameters, it is
often observed that output response 7¢ fails to remain stable at the reference line despite the improvement in
output response Tg.

Please refer to Appendix A for additional training results.
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Figure 4: The performance comparison between the proposed RL-based MPC before online training (solid blue
line) and that after online training (dot-dash green line). The dashed yellow lines represent the set points. Tuning
parameters: actor learning rate = 1 x 1077, critic learning rate = 1 x 1072, noise variance = 1.25 x 1073, noise
variance decay rate = 5 x 1079, discount factor = 0.95.
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Figure 5: The performance comparison between the proposed RL-based MPC before online training (solid blue
line) and that after online training (dot-dash green line). The dashed yellow lines represent the set points. Tuning
parameters: actor learning rate = 1.5 x 1077, critic learning rate = 1 x 1072, noise variance = 1.25 x 1073, noise
variance decay rate = 5 x 107, discount factor = 0.95.
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Figure 6: The training session diagram for pre-training critic network No.22. The horizontal axis denotes the
episode number while the vertical axis represents the episode reward. The blue, light blue, and yellow lines
represent the average reward, episode reward, and episode QO respectively. Tuning parameters: actor learning
rate = 0, critic learning rate = 1 x 102, noise variance = 2 x 1073, noise variance decay rate = 1 x 1073, discount
factor = 0.95.
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Figure 7: The performance comparison between the proposed RL-based MPC before online training (solid blue
line) and that after online training (dot-dash green line). The dashed yellow lines represent the set points. Tuning
parameters: actor learning rate = 1 x 1077, critic learning rate = 1 x 1072, noise variance = 1.25 x 1073, noise
variance decay rate = 5 x 1079, discount factor = 0.95. Pre-trained critic network No.22 is used.
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Figure 8: The performance comparison between the RL controller before online training (solid blue line) and that
after online training (dot-dash green line). The dashed yellow lines represent the set points. Tuning parameters:
actor learning rate = 1 x 107, critic learning rate = 5.2 x 1073, noise variance = 1.5 x 1073, noise variance
decay rate = 6 x 107°, discount factor = 0.95. Pre-trained critic network No.22 is used.



4.2 Water Tank Model

In Figure 9, the output response of the RL controller after online training not only successfully archives the
set point but also exhibits slightly less overshoot compared to that before online training.

Please refer to Appendix B for additional training results.
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Figure 9: The performance comparison between the RL controller before online training (solid blue line) and that
after online training (dot-dash green line). The dashed yellow line represents the set point. Tuning parameters:
actor learning rate = 2 x 1078, critic learning rate = 5 x 1073, noise variance = 0.5, noise variance decay rate =
1 x 1073, discount factor = 0.95.

5 Discussion

Based on the findings presented in section 4, it is evident that our proposed approach is effective in a SISO
system, which validates the feasibility of our proposed method. However, the application of our approach in a
MIMO system has only achieved partial success. This may be attributed to the RL agent’s insufficient capability
of handling complex MIMO systems. Having more state variables compared to the modified water tank model
may result in increased computational complexity in the CSTR model. It’s also observed that the RL agent
struggles to improve both output responses, which implies that the RL agent faces difficulty coordinating
multiple outputs of the MIMO system simultaneously. Thus, it is more challenging for the RL agent to
determine an optimal control policy for the CSTR model.

Another potential factor that could contribute to the undesired training results of the CSTR model is the
function approximation error in DDPG. In the AC method, the overestimation bias occurs in slightly stricter
conditions with unnormalized gradients. Without proper handling, the overestimation could grow into a more
significant bias in subsequent updates. The buildup of this error could lead to high variance in value estimation,
causing poor policy updates under noisy gradients and even divergence [9].
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The training results of the water tank model indicate that there may exist a set of hyperparameters (i.e., a
sweet point) for the CSTR model as well. However, without having a systematic way of choosing
hyperparameters, tuning a large number of hyperparameters could be very time-consuming. One research paper
points out that the design of experiments (DOE) could make the process of finding the optimal hyperparameters
more effective [10].

Most of the state-of-art off-policy RL algorithms fall into the category called growing batch, where data
is stored in a memory replay buffer. When the hidden state-action pairs are erroneously estimated due to a
mismatch between the data distribution in the batch and the policy, off-policy algorithms may fail to learn the
true off-policy. According to a journal article, restricting the action space to force the agent to behave close
to on-policy could mitigate the extrapolation error [11]. Memory replay buffer also plays an important role
in RL because it assures the success of many RL algorithms including DDPG. It is worth noticing that past
experiences are sampled uniformly in our DDPG algorithm. The disadvantage of this random sampling strategy
is that the quality difference among experiences is neglected. To address the drawback, prioritized memory
replay is suggested [12]. To improve our current algorithm, transitioning to Python is necessary as MATLAB
offers limited customization features.

6 Conclusion

In this project, a novel RL-based approach with pre-training is proposed to develop a learning-based MPC
which requires relatively low online computation costs. Our proposed approach works in a SISO system, but
it’s not fully successful in a MIMO system. To improve the effectiveness of our approach in the MIMO system,
it is worthwhile to conduct further research, including using DOE to systematically select hyperparameters for
testing and transitioning the work to Python to add customized features that can improve the effectiveness of the
DDPG algorithm.
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Appendices

Appendix A: Additional CSTR Model Simulation Results
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Figure A. 1: The performance comparison between the RL controller before online training (solid blue line)
and that after online training (dot-dash green line). The dashed yellow lines represent the set points. Tuning
parameters: actor learning rate = 1 x 1077, critic learning rate = 1 x 1072, noise variance = 2 x 1073, noise
variance decay rate = 1 x 1073, discount factor = 0.95.
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Figure A. 2: The performance comparison between the RL controller before online training (solid blue line)
and that after online training (dot-dash green line). The dashed yellow lines represent the set points. Tuning
parameters: actor learning rate = 8 x 107°, critic learning rate = 8 x 1072, noise variance = 2 x 107>, noise
variance decay rate = 1 x 107>, discount factor = 1.
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Figure A. 3: The performance comparison between the RL controller before online training (solid blue line)
and that after online training (dot-dash green line). The dashed yellow lines represent the set points. Tuning
parameters: actor learning rate = 1 x 1077, critic learning rate = 1 x 1072, noise variance = 2 x 107>, noise
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variance decay rate = 8 x 1079, discount factor = 0.95.
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Figure A. 4: The performance comparison between the RL controller before online training (solid blue line)
and that after online training (dot-dash green line). The dashed yellow lines represent the set points. Tuning
parameters: actor learning rate = 1 x 107, critic learning rate = 6.8 x 1073, noise variance = 2.25 x 1073, noise
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variance decay rate = 9 x 1075, discount factor = 0.97.
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Figure A. 5: The performance comparison between the RL controller before online training (solid blue line)
and that after online training (dot-dash green line). The dashed yellow lines represent the set points. Tuning
parameters: actor learning rate = 1 x 1077, critic learning rate = 6.8 x 1073, noise variance = 2 x 1073, noise
variance decay rate = 8 x 1075, discount factor = 0.96.
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Figure A. 6: The performance comparison between the RL controller before online training (solid blue line)
and that after online training (dot-dash green line). The dashed yellow lines represent the set points. Tuning
parameters: actor learning rate = 1 x 1077, critic learning rate = 6.4 x 1073, noise variance = 2.5 x 1073, noise
variance decay rate = 1 x 1073, discount factor = 0.92.
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Appendix B: Additional Water Tank Model Simulation Results
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Figure B. 1: The performance comparison between the RL controller before online training (solid blue line)
and that after online training (dot-dash green line). The dashed yellow line represents the set point. Tuning
parameters: actor learning rate = 2 x 1078, critic learning rate = 5 x 1072, noise variance = 0.5, noise variance
decay rate = 1 x 107>, discount factor = 0.95.
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Figure B. 2: The performance comparison between the RL controller before online training (solid blue line)
and that after online training (dot-dash green line). The dashed yellow line represents the set point. Tuning
parameters: actor learning rate = 2 x 1078, critic learning rate = 1 x 103, noise variance = 0.5, noise variance
decay rate = 1 x 107, discount factor = 0.95.
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Figure B. 3: The performance comparison between the RL controller before online training (solid blue line)
and that after online training (dot-dash green line). The dashed yellow line represents the set point. Tuning
parameters: actor learning rate = 1 x 10~7, critic learning rate = 1 x 1073, noise variance = 0.35, noise variance
decay rate = 1 x 107>, discount factor = 0.95.
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